
rspa.royalsocietypublishing.org

Research
Cite this article: Lafont T, Totaro N, Le Bot A.
2017 Coupling strength assumption in
statistical energy analysis. Proc. R. Soc. A 473:
20160927.
http://dx.doi.org/10.1098/rspa.2016.0927

Received: 20 December 2016
Accepted: 17 March 2017

Subject Areas:
structural engineering, acoustics, wave motion

Keywords:
sound and vibration, statistical energy
analysis, weak coupling

Author for correspondence:
A. Le Bot
e-mail: alain.le-bot@ec-lyon.fr

Electronic supplementary material is available
online at https://dx.doi.org/10.6084/m9.
figshare.c.3732244.

Coupling strength assumption
in statistical energy analysis
T. Lafont1,2, N. Totaro1 and A. Le Bot2

1Laboratoire de Tribologie et Dynamique des Systèmes,
École Centrale de Lyon, 69134 Écully, France
2Laboratoire Vibrations Acoustique, INSA Lyon, 69621 Villeurbanne,
France

ALB, 0000-0002-3834-2685

This paper is a discussion of the hypothesis of
weak coupling in statistical energy analysis (SEA).
The examples of coupled oscillators and statistical
ensembles of coupled plates excited by broadband
random forces are discussed. In each case, a reference
calculation is compared with the SEA calculation.
First, it is shown that the main SEA relation, the
coupling power proportionality, is always valid for
two oscillators irrespective of the coupling strength.
But the case of three subsystems, consisting of
oscillators or ensembles of plates, indicates that
the coupling power proportionality fails when the
coupling is strong. Strong coupling leads to non-zero
indirect coupling loss factors and, sometimes, even to
a reversal of the energy flow direction from low to
high vibrational temperature.

1. Introduction
Statistical energy analysis [1,2] (SEA) is a well-known
statistical theory of sound and vibration based on
an estimation of energy transfer between subsystems
subjected to random forces. The main result is the
so-called coupling power proportionality, which states
that the power transmitted between any pair of
coupled oscillators submitted to uncorrelated white
noise forces is proportional to the difference in
their energies [3]. A generalization to an arbitrary
number of oscillators was achieved by Newland [4]
with the additional hypothesis that the coupling is
weak. For multi-degree of freedom subsystems, the
coupling power proportionality is still valid (but now
with the difference in modal energies) but requires
further assumptions (rain-on-the-roof excitations, light
damping, large number of resonant modes). The reader
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may refer to [5–11] for reviews of SEA and discussions on the required hypotheses.
The question of coupling in SEA has been the subject of numerous discussions in the literature.

It is generally understood that the coupling power proportionality is verified when the coupling
between subsystems is weak and conservative. The assumption of conservative coupling is
implicitly satisfied with the three types of classical coupling: elastic, gyroscopic and inertial. When
dissipation occurs in couplings, the coupling power proportionality generally fails because the
exchanged power is a linear combination of the vibrational energies, which does not reduce to a
difference of energies [12].

The status of weak coupling is more disparate. In [3], weak coupling was invoked to derive the
coupling power proportionality between two oscillators. But in [13], the assumption was relaxed
without modifying the result. In [4], the weak coupling is again invoked through the perturbation
technique to generalize the coupling power proportionality to more than two oscillators. When
the number of oscillators is greater than two, a strong coupling invalidates the coupling power
proportionality. A counter-example with three resonators is given in [14]. The exchanged power is
found to be a linear combination of the energies of all the oscillators and not only the two adjacent
ones. The importance of weak coupling for SEA applied to sets of mechanical resonators has been
underlined in [15], while Keane & Price [16] suggest that strong coupling may be acceptable in
SEA for two point-connected subsystems but with coupling loss factors not given in a closed
form.

Several authors have proposed weak coupling criteria. A review is given by Finnveden [17].
Smith [18] studied the transition from weak to strong coupling and established a criterion based
on the ratio of the coupling loss factor and the damping loss factor. The coupling is said to
be strong if the subsystem has a damping loss factor smaller than the coupling loss factor.
Langley [19] put forward a definition of weak coupling based on Green’s functions: the coupling
is weak if the Green function of the uncoupled subsystem is approximately equal to the Green
function of the coupled system. The weak coupling indicator of Fahy & James [20] relies on
Langley’s definition. The quantification of coupling is achieved by estimating the rising time θ
of energy of the indirectly excited subsystem. When the ratio between θ and the signal duration
is small compared with unity, the coupling is weak. Mace [21] found, by a wave approach, that
two parameters based on reflectance, reflection and transmission coefficients are necessary to
estimate the coupling strength. See also [22], where a distinction is made between the strength
of the connection and the strength of the coupling. Finnveden [23] showed that the coupling
power proportionality is valid for three subsystems, provided that a factor noted as γ (the ratio
of conductivity and the product of modal overlaps) is small.

This study is a discussion on the necessity of the weak coupling assumption in SEA. It aims
to provide numerical evidence that SEA is fundamentally based on the assumption of weak
coupling. Two facts are examined: the principle of the coupling power proportionality and the
exactness of the proportionality constant predicted by classical SEA. The paper is organized as
follows. Section 2 focuses on a discussion on mechanical oscillators, while §3 is dedicated to
coupled plates with resonators. In both sections, an SEA prediction is compared with a reference
calculation systematically in weak and strong coupling regimes. The reasons for the discrepancy
in the strong regime are discussed. Finally, some concluding remarks are given in the last section.

2. Coupled oscillators

(a) Statistical energy analysis for coupled oscillators
Consider two oscillators of mass mi attached to a rigid frame by springs of stiffness ki, a dashpot
with a viscous damping coefficient λi and coupled together through a spring of stiffness K, as
shown in figure 1a. The oscillators are submitted to external forces Fi. Assuming that the elastic
coupling is conservative and that the external forces are stationary and uncorrelated white noise,
it is known [3,13] that the mean power exchanged between subsystems i and j is proportional to

 on April 24, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


3

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160927

...................................................

F2

X2X1

m1 m2
K K K

k1l1 k2l2

F3

X3

m3

k3l3

F2

X2

m2

k2l2

F1

X1

m1

k1l1

F1
(a) (b)

Figure 1. Mechanical oscillators submitted to uncorrelated random forces Fi . (a) Two oscillators and (b) three oscillators.

the difference in the mean vibrational energies

Pij = β(Ei − Ej), (2.1)

where Pij, Ei, Ej are the random expectations of the exchanged power and vibrational energies.
This is the so-called coupling power proportionality. For an elastic coupling, the coefficient β is

β = K2(�i +�j)

mimj[(ω2
i − ω2

j )2 + (�i +�j)(�iω
2
j +�jω

2
i )]

, (2.2)

where �i = λi/mi is the half power bandwidth and ωi = [(ki + K)/mi]1/2 is the ‘blocked’ natural
frequency of oscillator i.

The coupling power proportionality (2.1) and the coefficient β of equation (2.2) are valid
under quite general conditions. The only required assumption is that the forces F1 and F2 have
constant power spectral densities S1 and S2 and a zero cross-power spectral density. Although
the assumption of weak coupling was invoked in the original publication [3], it has been relaxed
in the second publication [13]. The coupling power proportionality between two oscillators is
therefore established for weak and strong coupling irrespective of the level of dissipation.

The coupling power proportionality remains verified to good approximation if, instead of a
true white noise, the external forces are band limited, provided that the two ‘blocked’ frequencies
are contained in the frequency band of excitation. In that case, we may introduce the central
frequency of excitation ωc and the usage is to decompose the coefficient β in the product β = ηijωc,
where ηij is the coupling loss factor. The symmetry of β under the permutation i ↔ j allows to
write

ηijωc = ηjiωc. (2.3)

This reciprocity relationship is also called the consistency condition [24].
The coupling power proportionality is valid for more than two oscillators, in which case it

applies to any pair of oscillators. But the original method [3] gives rise to tedious calculations
for more than two oscillators. The perturbation technique introduced by Newland [4] gives a
satisfactory solution to this problem, but requires the additional assumption of weak coupling.
The final result is that equation (2.1) is valid up to order 2 in the power of coupling strength.
The coefficient β is again given by (2.2), except that the frequencies ωi = (ki/mi)1/2 are now the
‘free’ natural frequencies. In the weak coupling regime K � ki, the ‘blocked’ and ‘free’ natural
frequencies are equal at first order in K/ki, and therefore the ‘free’ and ‘blocked’ versions of β are
equal at second order in K/ki. The question of whether the factor β must be used with the free or
blocked natural frequencies is therefore irrelevant in the weak coupling regime but may have a
certain importance when the coupling starts to strengthen.

Let us now introduce the example of mechanical resonators that will serve as a numerical test
to discuss these general ideas further. We consider three oscillators coupled by springs of stiffness
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K and excited by uncorrelated white noise forces, as shown in figure 1b. Taking into account the
coupling power proportionality, the energy balance of each oscillator reads

Pi =ωcηiEi + ωc
∑
j�=i

(ηijEi − ηjiEj), (2.4)

where Pi denotes the mean power supplied by the force Fi, ηiωcEi is the mean power dissipated in
the dashpot and ηi = λi/(miωc) is the damping loss factor. In the case of figure 1b, these equations
may be written in a matrix form⎡

⎢⎣P1
P2
P3

⎤
⎥⎦=ωc

⎡
⎢⎣η1 + η12 −η21 0

−η12 η2 + η21 + η23 −η32
0 −η23 η3 + η32

⎤
⎥⎦
⎡
⎢⎣E1

E2
E3

⎤
⎥⎦ . (2.5)

The above coupling loss factor matrix verifies the conditions of energy balance and consistency.
Since there is no physical link between oscillators 1 and 3, the coupling loss factors η13 and η31
are set to zero. Such a system is referred to as a proper-SEA system [25].

(b) Reference calculation for coupled oscillators
We now examine the reference calculation for the example of three oscillators.

In the Fourier space, the equations of motion of coupled oscillators are DX = F, where X is a
vector whose components are the displacements of oscillators, F is the external force vector and
D is the dynamic stiffness matrix. The frequency response matrix H, obtained by inverting D, of
the mechanical oscillators of figure 1 is

H(ω) =

⎡
⎢⎣m1(ω2

1 − ω2 + jω�1) −K 0
−K m2(ω2

2 − ω2 + jω�2) −K
0 −K m3(ω2

3 − ω2 + jω�3)

⎤
⎥⎦

−1

, (2.6)

where ωi = [(ki + K)/mi]1/2 is the ‘blocked’ natural frequency of oscillators i = 1, 3, ω2 =
[(k2 + 2K)/m2]1/2 is that of oscillator 2 and j = √−1 is the imaginary unit.

The frequency response matrix, also called the receptance matrix, gives the response X of the
system to any harmonic input F by X = HF. But when the forces F are random, the response X is
also random and the question is rather how to determine the output power spectral densities
SXiXj from the knowledge of the input power spectral densities SFiFj . The theory of random
vibrations shows that SXiXj =∑

k,l H̄ikHjlSFkFl , where Hik is the entry of row i and column k in
the receptance matrix H and the overline denotes the complex conjugate. For the power spectrum
of the velocity SẊiẊj

, the receptance Hik is simply replaced by jωHik and Hjl by jωHjl. For the

cross-power spectrum SFiẊj
of force Fi and velocity Ẋj, Hik is replaced by 1 and Hjl by jωHjl.

All other combinations are possible. The probabilistic expectation of a product XiXj, ẊiẊj or
FiẊj is simply obtained by integration of the power spectrum over all frequencies. For instance,
〈XiXj〉 = ∫

SXiXj dω/2π , where 〈.〉 denotes the probability expectation or mean value.
When the forces Fk are random, stationary and uncorrelated with a power spectral density

Sk constant within the frequency band [ωmin,ωmax] and zero elsewhere, the expectation of the
velocity square of oscillator i is

〈Ẋ2
i 〉 =

∑
k

Sk

π

∫ωmax

ωmin

ω2|Hik(ω)|2 dω, (2.7)

where we have used H(−ω) = H̄(ω) and the fact that SFkFl = 0 when k �= l. Considering that the
mean vibrational energy Ei is defined as twice the mean kinetic energy, we get

Ei =
∑

k

Sk

π

∫ωmax

ωmin

miω
2|Hik(ω)|2 dω. (2.8)
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In the same way, the mean product 〈XiẊj〉 is

〈XiẊj〉 =
∑

k

Sk

π

∫ωmax

ωmin

Re[jωH̄ik(ω)Hjk(ω)] dω, (2.9)

where Re denotes the real part of a complex number. The net power Pij = K〈XiẊj〉 transmitted
from oscillator i to oscillator j is therefore

Pij = K
∑

k

Sk

π

∫ωmax

ωmin

Re[jωH̄ik(ω)Hjk(ω)] dω. (2.10)

One may observe from equation (2.6) that this sum is zero for P13.
The mean power injected into oscillator i is

Pi = 〈FiẊi〉 = Si

π

∫ωmax

ωmin

Re[jωHii(ω)] dω. (2.11)

Thus, by equations (2.8), (2.10) and (2.11), the numerical computation of the expectations of the
vibrational energies, transmitted power and supplied power reduces to a frequency integration
of the products of the frequency response functions.

(c) Non-constrained identification technique
The power injection method introduced by Lyon [1] and Bies & Hamid [26] is a technique to
identify the coupling loss factors appearing in equation (2.5) by testing the structure. It is usually
employed when a direct estimation of the coupling loss factors is not possible. It consists in
exciting successively each oscillator and computing (or measuring in the original method) the
resulting energies and supplied power in all other oscillators.

Let us fix k the index of an oscillator and let us denote by Ek
i the vibrational energy of oscillator

i when only oscillator k is excited with a supplied power Pk. Application of equation (2.5) gives
three linear equations on the coupling loss factors ηij and damping loss factors ηi. This procedure,
repeated for all k, gives a system P = EN, where P is the injected power vector, E is a matrix
composed of vibrational energies Ek

i and N is a vector which contains the damping loss factors
and coupling loss factors without prejudging that some of them are zero. In the case of the three
oscillators of figure 1, it yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1
0
0
0

P2
0
0
0

P3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=ωc

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1
1 E1

1 E1
1 −E1

2 0 0 −E1
3 0 0

0 −E1
1 0 E1

2 E1
2 E1

2 0 −E1
3 0

0 0 −E1
1 0 0 −E1

2 E1
3 E1

3 E1
3

E2
1 E2

1 E2
1 −E2

2 0 0 −E2
3 0 0

0 −E2
1 0 E2

2 E2
2 E2

2 0 −E2
3 0

0 0 −E2
1 0 0 −E2

2 E2
3 E2

3 E2
3

E3
1 E3

1 E3
1 −E3

2 0 0 −E3
3 0 0

0 −E3
1 0 E3

2 E3
2 E3

2 0 −E3
3 0

0 0 −E3
1 0 0 −E3

2 E3
3 E3

3 E3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η1
η12
η13
η21
η2
η23
η31
η32
η3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.12)

As the vector P and the matrix E are assumed to be known, the vector N is computed by solving
equation (2.12).

Note that the two terms η13 and η31 are not forced to be zero in this procedure. It may be that
non-zero values of η13 and η31 are obtained with the power injection method. These terms are
called indirect coupling loss factors because their existence suggests that energy flows directly
from oscillator 1 to oscillator 3 even though they are uncoupled.
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Figure 2. Evolution ofβ12,REF,β12,SEA andβ12,FREE for two oscillators versus the stiffness ratio κ .

Table 1. Parameters of the mechanical oscillators.

oscillator massmi (kg) stiffness ki (N m−1) dampingλi (Ns m−1)

1 1.0 1.0 0.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 4.0 1.0 0.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 2.0 1.0 0.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) Comparison between statistical energy analysis and reference
To compare the prediction of SEA with results from the reference calculation, we fix the input
power spectral densities S1 = 1 and S2 = S3 = 0.

The reference calculation consists in computing first the frequency response matrix H(ω) by
equation (2.6), then the mean vibrational energies Ei by equation (2.8) and finally the transmitted
power Pij by equation (2.10). The ratio between the transmitted power Pij and the difference of
energies Ei − Ej is noted by βij,REF.

The SEA calculation consists in calculating the coupling loss factors directly by equation (2.2)
with the ‘blocked’ natural frequencies. The obtained value of the coefficient β is noted by βij,SEA.
If the ‘free’ natural frequencies are used instead, the resulting factor shall be denoted by βij,FREE.
We then compare βij,SEA, βij,FREE and βij,REF for a varying coupling strength.

The mechanical characteristics of the oscillators are given in table 1. All stiffnesses ki are fixed
to 1 arbitrarily. The viscous damping coefficient λi is proportional to the mass mi so that the half

power bandwidth �i = λi/mi = 0.1 is the same for all oscillators. The stiffness ratio κ = K/
√

kikj

varies from 0.01 to 100. As k1 = k2 = k3 in the numerical simulation, there is a unique value of
κ for the two pairs of oscillators. The blocked natural frequencies, affected by κ , are constant
in weak coupling but increase when the coupling strengthens. The frequency bandwidth of
integration is taken sufficiently large as ωmin = 0 and ωmax = 10 × ωm, where ωm is the largest
blocked frequency. The central frequency is fixed to ωc = 0.736 rad s−1, which is the mean value
of free natural frequencies.

(i) Two coupled oscillators

First, let us present results in the case of the two oscillators shown in figure 1a. Figure 2 shows the
evolution of β12,SEA, β12,FREE and β12,REF versus the stiffness ratio κ .
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Figure 3. Evolution ofβij,REF andβij,SEA for three oscillators versus the stiffness ratio κ .

A perfect agreement between β12,SEA and β12,REF is observed for any strength of coupling.
For two coupled oscillators excited by random forces, the coupling power proportionality holds
irrespective of the coupling strength.

Instead of using the ‘blocked’ natural frequencies in equation (2.2) one may use the ‘free’
natural frequencies in equation (2.2). The resulting factor noted β12,FREE is also shown in figure 2.
It appears that β12,FREE and β12,SEA agree well for weak coupling but the discrepancy emerges
rapidly for κ > 1. It is apparent from figure 2 that the correct expression of β is therefore obtained
with the ‘blocked’ natural frequencies and that the usage of ‘free’ natural frequencies is limited
to weak coupling.

(ii) Three coupled oscillators

Next, let us consider the case of the three oscillators shown in figure 1b.
Figure 3 shows the evolution of βij,SEA and βij,REF between oscillators 1 and 2 and between

oscillators 2 and 3 when oscillator 1 is excited by a white noise force. One may observe that the β12
values calculated by both methods are in good agreement until a threshold value of the stiffness
ratio about unity. Beyond this value, β12,REF and β12,SEA disagree by several dBs, indicating that
equation (2.2) is no longer valid in the strong coupling regime. Results with β23 confirm these
observations. The discrepancy is even more obvious in strong coupling since the error may reach
several orders of magnitude.

The Smith criterion [18] states that strong coupling starts when the ratio of the coupling loss
ηij factor to the damping loss factor ηi is greater than 1. In the present notations, Smith’s ratio
is σ = (βij/�i + βji/�j). The βij that must be used in this criterion is βij,SEA, predicted by SEA,
and not βij,REF, which cannot be estimated in general. The horizontal dashed line labelled σ = 1
in figure 3 gives the limit value (�−1

i +�−1
j )−1 of βij separating weak and strong regimes. As

�1 =�2 =�3 in the present simulation, this threshold is the same for the two couplings. When
βij,SEA exceeds this level, the coupling regime is strong and errors start to appear between βij,SEA
and βij,REF.

From these results, one can clearly draw a separation between weak and strong coupling.
This threshold, estimated at κ ∼ 1 or σ ∼ 1 in the present simulation, is sufficient to observe the
failure of the coupling power proportionality. The assumption of weak coupling is necessary
to accurately apply SEA in the case of three or more oscillators although it was not necessary
for two oscillators. The case of two resonators is therefore a special case which is by no means
representative of the general case.
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Figure 4. Identified damping loss factors and coupling loss factors for weak coupling (κ = 0.1) and strong coupling (κ = 10).

Table 2. Damping and coupling loss factors identified by the non-constraint method.

κ η1 η2 η3 η12 η21 η23 η32 η13 η31

0.01 0.14 0.14 0.14 1.2 × 10−5 1.2 × 10−5 4.4 × 10−5 4.4 × 10−5 −3.8 × 10−10 −3.8 × 10−10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.1 0.14 0.14 0.14 1.0 × 10−3 1.0 × 10−3 4.4 × 10−5 4.4 × 10−5 −4.2 × 10−6 −4.2 × 10−6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0.14 0.14 0.14 5.8 × 10−2 5.8 × 10−2 0.147 0.147 −5.6 × 10−3 −5.6 × 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 0.14 0.14 0.14 0.274 0.274 0.198 0.198 0.032 0.032
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100 0.14 0.14 0.14 0.333 0.333 0.174 0.174 0.063 0.063
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Indirect coupling

Indirect coupling may appear when the coupling threshold is exceeded. To highlight this
phenomenon, the non-constrained identification technique is used jointly with the reference
calculation to provide the exact oscillator energies and supplied powers. The vector N is
computed for different coupling strengths by using the energies and powers calculated by
equations (2.8) and (2.11). If the coupling power proportionality (2.1) and equation (2.2) are valid
one expects to find a coupling loss factor matrix of a proper-SEA [25]: the indirect coupling loss
factors must be zero and consistency is respected.

The oscillators are successively excited with power spectral densities Si = 1 over the frequency
band 0–10 × ωm rad s−1. The loss factors are computed with equation (2.12) for several values of
κ ranging from 0.01 and 100.

Table 2 shows the values of the identified loss factors versus the stiffness ratio. Figure 4
represents the damping and coupling loss factors in the form of a bar chart for two stiffness ratios,
0.1 and 10.

Various comments can be made. Firstly, the identified damping loss factors do not vary with
the coupling strength. Their values are well estimated compared with the prescribed value ηi =
�i/ωc = 0.14. The power injection method gives the correct values of the damping loss factors in
all cases of coupling.

Secondly, comparing, respectively, η12 with η21 and η23 with η32 in figure 4 we may observe
that η12 = η21 and η23 = η32 in all cases. Consistency is therefore always verified in both the weak
and strong coupling regimes.

Thirdly, the indirect coupling loss factors η13, η31 are negligible compared with other coupling
loss factors in weak coupling (table 2). For a coupling ratio of 0.1 as in figure 4, the indirect
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Figure 5. Simply supported plates with random resonators and coupled by springs.

coupling loss factors are negligible. The identified coupling loss factor matrix is therefore a
proper-SEA matrix. But when the coupling strength approaches the threshold value indirect
coupling starts to appear. For a coupling strength greater than the threshold value (figure 4), the
indirect coupling loss factors become important and the coupling loss factor matrix is no longer
a proper-SEA matrix.

The non-constrained identification technique highlights the appearance of indirect coupling
and its importance when the coupling is strong. The indirect coupling loss factors may even
dominate the energy exchanges. A correct prediction of the energy exchanges in strong coupling
therefore requires that the indirect coupling loss factors are taken into account.

3. Coupled plates
In this section, we discuss the example of three simply supported rectangular plates with random
resonators and coupled by springs.

(a) Statistical energy analysis for coupled plates
Let us consider three plates with resonators and coupled by springs of stiffness K, as shown in
figure 5. The three plates are referenced by i = 1, 2, 3. The plates are rectangular and have length ai
and width bi. Random resonators are positioned on each plate. The bending stiffness of the plates
is noted as Di, the mass per unit area mi and the modal density ni. The asymptotic expression of
the modal density in the plates is [2]

ni = aibi

4π

√
mi

Di
. (3.1)

According to SEA, assuming that the first plate is driven by a single random force with a
constant power spectral density and that the frequency band centred in ωc contains a sufficiently
large number of modes, the expectation of the power exchanged between plates i and j is

Pij = β

(
Ei

ni
− Ej

nj

)
, (3.2)

where Ei is the mean vibrational energy of plate i. This is the coupling power proportionality for
plates. The proportionality now holds with the difference of modal densities Ti = Ei/ni that we
shall call vibrational temperatures.

The coupling loss factor for spring coupled subsystems has been given from the former texts
on SEA (see for instance [27], eqn (25)). The classical formula is ηij = πK2nj/2ω3

c m′
im

′
j, where m′

i is
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the mass of subsystem i. The coefficient β =ωcniηij =ωcnjηji for two plates coupled by a spring of
stiffness K is therefore [22]

β = K2

32πω2
c

1
√

miDi

√
mjDj

. (3.3)

The consistency relationship niηij = njηji comes from the symmetry of β under the permutation
i ↔ j. With this convention, the coupling power proportionality reads

Pij =ωc(ηijEi − ηjiEj). (3.4)

The energy balance (2.4) applies. Consequently, SEA leads to equation (2.5) for the example
of figure 5 for exactly the same reasons as for the three oscillators case. Formally, the problem of
coupled plates is similar to that of coupled oscillators except for the calculation of coupling loss
factors.

Since we have assumed that only plate 1 is excited, we may set P2 = P3 = 0 in equation (2.5).
By a direct calculation, the ratios of modal energies Ti = Ei/ni predicted by SEA are

T2

T1
= η12

[(η2 + η21 + η23) − η32(η23/(η3 + η32)]
× n1

n2
(3.5)

and
T3

T2
= η23

η3 + η32
× n2

n3
. (3.6)

These equations will be used as a test of the SEA prediction.

(b) Reference calculation for coupled plates
In the reference calculation, plate 1 is excited by a single-point force at position x0, y0. The force
field f has expression

f (x, y, t) = F(t)δ(x − x0)δ(y − y0), (3.7)

where F is a random force with a power spectral density S1 constant in the frequency band
[ωmin,ωmax].

The mean vibrational energy is twice the mean kinetic energy Ei = ∫
mi〈v̇2

i 〉 dx dy, where vi
denotes the deflection of plate i and the probability expectation is noted with brackets. The
integral is performed over the plate surface. The energies may be calculated by means of the
receptance of the coupled plates. The deflection vi of plate i at position x, y when plate 1 is excited
by a harmonic point force at position x0, y0 is noted as Hi1(x, y, x0, y0;ω), where ω is the circular
frequency. The mean vibrational energy in plate i becomes

Ei = S1

π

∫ ai

0

∫ bi

0

∫ωmax

ωmin

miω
2|Hi1(x, y, x0, y0;ω)|2 dω dy dx. (3.8)

This equation is similar to equation (2.8) except that the difficulty now reduces to computing the
receptances Hij of the coupled plates. This problem is solved in appendix A.

The mean power flowing from subsystem i to subsystem j is Pij = K〈viv̇j〉, where vi, vj are the
deflection of plates at the attachment point. In terms of receptances,

Pij = K
S1

π

∫ωmax

ωmin

Re[jωH̄i1(χi, ξi, x0, y0;ω)Hj1(χj, ξj, x0, y0;ω)] dω, (3.9)

where χi, ξi are the coordinates of the attachment point on plate i.
In the reference calculation, the ratios T2/T1 and T3/T2 are obtained by computing the

vibrational energies with equation (3.8) and the modal densities by equation (3.1).
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Table 3. Geometrical parameters of the three plates.

plate thickness (mm) length (m) width (m)

1 1 1 1/
√
3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 1.5
√
2 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 2.5 1
√
3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Positions of source and attachment points for the three plates.

plate source attachment 1–2 attachment 2–3

1 0.2 × 0.058 0.70 × 0.17 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 — 0.28 × 0.30 0.84 × 0.50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 — — 0.60 × 0.35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Comparison between statistical energy analysis and reference
The parameters used for the numerical simulation are the following. The plates are made of steel
with Young’s modulus E = 210 GPa, density 7800 kg m−3 and Poisson coefficient ν = 0.3, and the
three damping loss factors are η1 = 0.001, η2 = 0.001 and η3 = 0.002. The thickness, length and
width are presented in table 3. They are chosen such that their ratios length/width are irrational in
order to avoid regularity in the sequence of natural frequencies. The positions of the source point
and spring attachment points are given in table 4. The frequency band is an octave centred on
ωc = 2π × 2000 rad s−1 and the excitation is a single-point force applied to plate 1 with a constant
power spectral density. The receptances are computed by taking into account all modes from
0 Hz to 5.7 kHz. The vibrational energies are estimated by choosing at random 50 receivers on
each plate. The coupling stiffness K varies from 3 × 103 N m−1 to 3 × 107 N m−1.

Five resonators are placed on each plate. The total mass of the resonators does not exceed the
total mass of each plate and their natural frequencies are randomly chosen within the frequency
bandwidth of excitation. Their positions as well as their natural frequencies are chosen at random.
The reference calculation is processed 44 times with different realizations of random resonators.
Each sample of this population provides a result and their average value is compared with the
SEA prediction of this statistical ensemble.

(i) Diffuse field

To check whether the vibrational field is diffuse in all plates, one must compute the mode count
(the number of modes N = n(ω)(ωmax − ωmin) in the frequency band of excitation) and wave
attenuation. Table 5 shows that the mode count is of order of several hundreds for all plates,
which is normally sufficiently high. To enforce diffuseness, attenuation must also be low to mix
the energy efficiently by a large number of ray reflections [28]. Attenuation per mean free path is
defined by ηωcl/cg, where l is the mean free path and cg is the group velocity of waves at frequency
ωc. The values of attenuation given in table 5 show that they are below 6% in all plates. A value
of attenuation of about 0.03 means that rays reflect 30 times before losing 60% of their energy.
These two conditions of high mode count and low attenuation are sufficient to ensure that energy
fields are diffuse in the three plates [29]. Table 5 also summarizes the dimensionless wavelength
(number of wavelengths in the mean free path), damping loss factor, mode count, attenuation per
mean free path and modal overlap.

Figure 6 shows the positions of the plates in the dimensionless wavelength–damping loss
factor plane. The isovalue lines indicate the relative standard deviation of the repartition of energy
in plates observed by a reference calculation conducted on a single plate (see [10] for details). All
plates are confined in the zone where the value of the relative standard deviation is less than
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Figure 6. Isovalues of the relative standard deviation of energy in rectangular plates excited by a point force versus the
dimensionless wavelength (wavelength per mean free path) and damping loss factor. Crosses indicate the actual positions of
the plates.

Table 5. Dimensionless wavelength, damping loss factor, mode count, attenuation per mean free path and modal overlap
of the plates.

plate wavelength damping mode count attenuation modal overlap

1 8.2 0.001 368 0.026 0.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 10.7 0.001 600 0.034 0.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 9.0 0.002 441 0.056 0.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.3, meaning that the local fluctuations of energy within the plates are less than 30%. Because the
actual value of the energy at the connecting points is different from the mean value predicted
by SEA by less than 30%, one can expect that the error of SEA in the energy transfer is also less
than 30%.

(ii) Energy exchange

Figure 7 shows a comparison between the values βij,SEA predicted by equation (3.3) and the
numerical ratio βij,REF = Pij/(Ei/ni − Ej/nj) obtained by the reference calculation. The coupling

strength is controlled by the stiffness ratio κ = K/
√

m′
im

′
jω

4
c , where m′

i is the mass of plate i. As

there are two couplings, there are two stiffness ratios. The horizontal scale of figure 7 indicates
the maximal stiffness ratio which corresponds to the coupling between plates 1 and 2.

As in the case of coupled oscillators, βij,SEA is correct for low values of the stiffness ratio.
This observation is valid for both pairs of plates. In the regime of weak coupling, the difference
between βij,SEA and the average value of βij,REF is small. The grey zones of figure 7 indicate
the fluctuations over the ensemble of 44 realizations. For all samples, the error is confined to a
few decibels.

The weak coupling is a regime where the prediction of SEA is correct compared with reference
calculations. In particular, since the sign of βij,REF is always found to be positive in the weak
coupling regime, the energy flows from the oscillator with the highest vibrational temperature to
the one with the lowest vibrational temperature.

The transition to strong coupling is governed by Smith’s ratio, which is defined as the ratio of
coupling and damping loss factors. This reads σ = βij/Mi + βji/Mj, where Mi is the modal overlap.

 on April 24, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


13

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160927

...................................................

stiffness ratio k
10–5 10–4 10–3 10–2

–50

–40

–30

–20

–10

0

10

20

negative

s = 0.1

g = 0.1

b12,SEA

b23,SEA

b12,REF
population

b23,REF
population

b12,REF
average

b23,REF
average

10
lo

g 
|b

|

Figure 7. Evolution ofβij,REF andβij,SEA for three plates versus the stiffness ratio κ of coupling 1–2.

A horizontal dashed line labelled σ = 0.1 is plotted in figure 7 to represent the limit level of β12
of the weak coupling regime for the first coupling (plates 1 and 2). It is apparent from figure 7
that the condition β12 < 0.1σ predicts well the range of weak coupling where the error between
SEA and the reference calculation is negligible. The level for coupling 2–3 is not represented in
figure 7 but would predict a transition for a larger value of κ . The first coupling is therefore the
most constraining one.

A second criterion for the transition is the so-called gamma factor. It is defined as γ =
2βij/πMiMj [17]. This maximal level of β is plotted in figure 7 for coupling 1–2 as a horizontal
line labelled γ = 0.1. It is clear from figure 7 that the criterion β12 < 0.1γ also predicts well the
transition. As previously, the second coupling is less restrictive and is not represented in figure 7.

However, it may be remarked that the value of the stiffness ratio κ never reaches 1, although
this is the largest value of the two couplings. This highlights that κ does not represent in general
a good estimator of the transition.

In the regime of strong coupling, figure 7 shows a discrepancy between the values βij,SEA
predicted by equation (3.3) and the average value of βij,REF over the statistical ensemble obtained
with the reference calculation. The errors may reach several dozens of decibels. In the strong
coupling regime, β23,REF can even sometimes take negative values. This is the case for the two
values of β23,REF labelled negative in figure 7. This indicates that plate 3 has a larger modal energy
than plate 2, although the energy is flowing from plate 2 to plate 3.

(iii) Thermal equilibrium

Figure 8 shows the ratios of vibrational temperatures T2/T1 and T3/T2 versus the stiffness ratio κ .
In the weak coupling regime, SEA prediction and the average value of reference calculations agree
well. The energy decrease is strong: more than 40 dB from plate 1 to plate 2 and 10 dB less from
plate 2 to plate 3 for the lowest values of κ . The exchange of energy is weak, which maintains
a large difference in vibrational temperatures. Each plate has reached a state of diffuse field,
which means that the energy density is constant over the surface. As by equation (3.1) the modal
density is proportional to the area, a constant energy density may be interpreted as a constant
local vibrational temperature. Thus, each plate is in thermal equilibrium. But the difference in
vibrational temperature from one plate to its neighbour is large. A state of non-equilibrium exists
between plates. Such a non-equilibrium state can only be maintained if the loss of energy by
exchange is small compared with the internal losses. This is the meaning of Smith’s criterion
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Figure 8. Evolution of Tj/Ti,REF and Tj/Ti,SEA for three plates versus the stiffness ratio κ .

ηij � ηi. The state of local equilibrium and global non-equilibrium is therefore the domain where
SEA can be applied with a high level of confidence.

For the highest values of the stiffness ratio κ , a discrepancy is observed between SEA and
the reference calculation for T2/T1 and T3/T2. In this regime, SEA tends to predict a state of
equilibrium characterized by T2/T1 = T3/T2 = 1 (see the points labelled equilibrium in figure 8).
This limit may be easily derived from equations (3.5) and (3.6) by taking the approximations
η2 � η21 and η3 � η32 and using for consistency η21n2 = η12n1 and η32n3 = η23n2. However, the
reference calculation gives a difference of 10 dB between plates 1 and 2 and a much greater
difference between plates 2 and 3. The state of thermal equilibrium characterized by the
equality of vibrational temperatures as predicted by application of SEA to strong coupling is
not observed.

Always in the strong coupling regime, the last two points on the right of figure 8 show that the
ratio T3/T2 is greater than 1. These points correspond to the negative values of β shown in figure 7.
A ratio of T3/T2 greater than 1 means that vibrational energy flows from the plate with the lowest
vibrational temperature to that with the highest temperature. This way of energy flowing from a
cold to a hot subsystem may be qualified as anti-thermodynamic since the classical analogy with
thermodynamics no longer applies.

4. Conclusion
The main relation of SEA, the coupling power proportionality, states that the mean power
between substructures is proportional to the difference in their modal energies with a
proportionality factor β. It has been shown that the coupling power proportionality is valid for
two oscillators irrespective of the coupling strength. The proportionality coefficient β given by
Lyon & Maidanik [3] (equation (2.2)) is correct provided that the ‘blocked’ natural frequencies
are used.

For more than two subsystems, the numerical observations drawn from discrete systems
(oscillators) and continuous systems (ensembles of connected plates) are the following.

In the weak coupling regime, the coupling power proportionality is verified well. The values
of the proportionality coefficient β for coupled oscillators (equation (2.2)) and for coupled plates
(equation (3.3)) give satisfactory results. The energy ratios are therefore well estimated by SEA. In
particular, the power always flows from ‘hot’ to ‘cold’ subsystems.
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In the strong coupling regime, the predictions of the proportionality coefficient β by
equations (2.2) and (3.3) are not satisfactory. In particular, the energy ratios of the subsystems
are no more well estimated by SEA with these formulae.

The non-constrained identification technique applied to resonators shows that strong coupling
is responsible for the appearance of indirect coupling. The indirect coupling loss factors cannot
be negligible compared with the direct coupling loss factors and can even dominate them in
some situations.

In strong coupling, it may also be that the energy flows from a low modal energy subsystem
to a high modal energy subsystem. This inversion of the energy flow from ‘cold’ to ‘hot’
subsystems represents a limitation of the classical analogy with thermodynamics. In conclusion,
weak coupling is a general requirement for SEA to be applied with confidence.

Data accessibility. This work does not have any experimental data and the Matlab scripts to generate figures of
numerical simulations are released as the electronic supplementary material.
Authors’ contributions. The ideas presented in this article have been put forward and debated by all authors.
All authors have contributed to program the numerical examples, to write the manuscript, and gave final
approval for publication.
Competing interests. We have no competing interests.
Funding. This work was supported by the CNRS and Labex CeLyA of Université de Lyon, operated by
the French National Research Agency (ANR-10-LABX-0060/ANR-11-IDEX-0007). This support is greatly
appreciated.
Acknowledgements. The authors acknowledge the referees for their positive comments and suggestions.

Appendix A
This appendix gives the calculation of the receptance Hij(r, s;ω) of equations (3.8) and (3.9). This
is done in two steps.

(a) Single plate
We start by deriving an expression of the receptance H(r, s;ω) of a single plate with resonators.

Let v be the transverse displacement of the plate. The mass per unit area is noted as m, the
viscous damping coefficient as c and the bending stiffness as D. If a harmonic force F exp ( jωt) is
applied at point s, the equation of motion of the plate is

− mω2v + jωcv + D�2v= Fδ(r − s) +
∑

l

Slδ(r − sl), (A 1)

where�2 denotes the bi-Laplacian operator and Sl is the load applied by resonator l at position sl.
Let ul be the displacement of resonator l. The governing equation is

− Mlω
2ul + Kl[ul − v(sl)] = 0, (A 2)

where the resonator has mass Ml, stiffness Kl and is undamped.
Let ψn be the nth ‘free’ mode (no resonator, no damping) of the plate and ωn the

related eigenfrequency. The modes are orthogonal and are conventionally normalized by∫
ψn(r)ψm(r)dr = δnm. For simply supported edges, the nth mode referred to by two integers

n = (p, q) is

ψn(x, y) = 2√
ab

sin
(

pπ
x
a

)
sin

(
qπ

y
b

)
p, q = 1, 2, . . . , (A 3)

where the plate has length a and width b.
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Since the dissipation in equation (A 1) is modelled by a viscous damping coefficient
proportional to the mass density, the displacement field v(r) of the damped plate may be
developed in the series of the undamped modes

v(r) =
∑

n
Anψn(r). (A 4)

Substituting into the governing equation (A 1) and using the orthogonality property of normal
modes give

v(r) =
∑

n

Fnψn(r)

m(ω2
n + j�ω − ω2)

, (A 5)

where �= c/m is the half-power bandwidth of all modes and the modal force Fn is

Fn = Fψn(s) +
∑

l

Slψn(sl). (A 6)

Furthermore, the reaction of the lth resonator is

Sl = Kl[ul − v(sl)]. (A 7)

The receptance of the plate with resonators is H(r, s;ω) = v(r), where a unit force F = 1 has been
substituted. Combining (A 5)–(A 7), this may be written

H(r, s;ω) = H0(r, s;ω) +
∑

l

Kl[ul − v(sl)]H
0(r, sl;ω), (A 8)

where

H0(r, s;ω) =
∑

n

ψn(s)ψn(r)

m(ω2
n + j�ω − ω2)

(A 9)

is the receptance of the ‘free’ plate. The problem therefore reduces to the determination of the
unknowns v(sl) and ul.

They are obtained by applying (A 8) and at points r = sl. This gives

v(sl) = H0(sl, s;ω) +
∑

l′
Kl′ [ul′ − v(sl′ )]H

0(sl, sl′ ;ω). (A 10)

Equation (A 2) gives the second equation

ul = KlHl(ω)vi(sl), (A 11)

where Hl(ω) = 1/(−Mlω
2 + Kl) denotes the receptance of resonator l.

The method consists in first determining the unknowns v(sl) and ul by solving the set of linear
equations (A 10) and (A 11), and second in calculating the receptance H(r, s;ω) at any point r with
equation (A 8).

(b) Coupled plates
This subsection gives the receptance Hij(r, s;ω) of N plates coupled through springs of stiffness
K. Each plate is covered by mass-spring resonators and has an ‘isolated’ receptance (no coupling)
noted Hi(r, s;ω) which may calculated by the method of the previous subsection.

Assuming that a harmonic point load F exp (jωt) is applied to plate j at point s, the
displacement in plate i at point r is

vi(r) = FδijHi(r, s;ω) +
∑

k

RikHi(r, rik;ω), (A 12)

where Rik is the reaction applied by plate k onto plate i through the coupling spring at position
rik. The presence of δij on the right-hand side means that the external load term is present only for
plate j.
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The reaction Rik is
Rik = K[vk(rki) − vi(rik)]. (A 13)

Therefore, by substituting (A 13) into (A 12) and setting F = 1, the receptance of the coupled plates
Hij(r, s;ω) = vi(r) is

Hij(r, s;ω) = δijHi(r, s;ω) +
∑

k

K[vk(rki) − vi(rik)]Hi(r, rik;ω). (A 14)

The unknowns vi(rik) are determined by setting r = rik into equation (A 14). This yields

vi(rik) = δijHi(rik, s;ω) +
∑

k′
K[vk′ (rk′i) − vi(rik′ )]Hi(r, rik′ ;ω). (A 15)

The method consists in first solving the set of linear equations (A 15) in unknowns vi(rik) and then
computing the receptance of the coupled plates with (A 14).

For instance, for the three plates in figure 5, the first spring is attached at r12 on plate 1 and r21
on plate 2. The second spring is attached at points r23 on plate 2 and r32 on plate 3. The excited
plate is j = 1. The three receptances Hi1(r, s;ω) form a column vector H = (H11, H21, H31)T given by

H(r, s;ω) = KΨ (r)V + F(r), (A 16)

where V = (v1(r12), v2(r21), v2(r23), v3(r32))T, F(r) = (Φ1(s, r), 0, 0)T and

Ψ (r) =

⎛
⎜⎝−Φ1(r12, r) Φ1(r12, r) 0 0
Φ2(r21, r) −Φ2(r21, r) −Φ2(r23, r) Φ2(r23, r)

0 0 Φ3(r32, r) −Φ3(r32, r)

⎞
⎟⎠ . (A 17)

The unknowns are determined by the system

(I + KΦ)V = F0, (A 18)

where I is the 4 × 4 identity matrix and F0 = (Φ1(s, r12), 0, 0, 0)T. The matrix Φ is

Φ =

⎛
⎜⎜⎜⎝
Φ1(r12, r12) −Φ1(r12, r12) 0 0

−Φ2(r21, r21) Φ2(r21, r21) Φ2(r23, r21) −Φ2(r23, r21)
−Φ2(r21, r23) Φ2(r21, r23) Φ2(r23, r23) −Φ2(r23, r23)

0 0 −Φ3(r32, r32) Φ3(r32, r32)

⎞
⎟⎟⎟⎠ . (A 19)

The receptances are therefore given by equation (A 16) at all points r for any excitation point s
where the unknowns are obtained by solving equation (A 18).
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